Find the maximum or minimum value of a function
What Is a function
There are two variables in a function. autonomous variable and dependent variable.
Here we find the maximum or minimum value of a function in 2 ways.
1) The usual method
This is only used for Square functions
f (x) = ax^2 + bx +c a , b, and c are constants
STEPS
Important ----> If the a is a negative value, the negative sign must first be taken out of the parentheses.
and also if a > 1 a must be taken out of the parentheses.
f(x)= -ax^2 + bx + c
E.g. f(x)= -x^2 + 4x +6 f(x)= 2x^2 + 4x +5 f(x)= -3x^2 + 2x -6
f(x)= -{ x^2 -4x -6} f(x)= 2{x^2 + 2x + 5/2} f(x)= -3{x^2 -2/3 x +2}
If the function is as follows
f(x)=a{x^2 + Bx + C } , g(x)= x^2 + Bx + C B and C are constants
STEP 1 ----> [variable + B/ 2] ^ 2
E.g. 01) f(x)= x^2 + 4x + 6 02) f(x)= -x^2 + 4x +6
(x + 2)^ 2 f(x)= -{ x^2 -4x -6}
(x-2)^2
03) f(x)= 2x^2 + 4x +5 04) f(x)= -3x^2 + 2x -6
f(x)= -{ x^2 -4x -6} f(x)= -3{x^2 -2/3 x +2}
(x-2)^2 (x-1/3)^2
STEP 2
Consider the first example
E.g. f(x)= x^2 + 4x + 6
(x + 2)^ 2 = x^2 + 4x + 4 -----> (1)
The constant of expression from (1) is 4 and the constant of f (x) is 6. Adding 2 to the (1) expression gives the expression f(x).
f (x) = { (x + 2)^ 2 + 2}
f (x) = (x + 2)^ 2 + 2
f(x) = [variable + B/ 2]^2 + Value to be added to obtain the last constant of f(x)
Now the maximum or minimum value is obtained when the [variable + B/ 2] is zero.
The maximum or minimum is determined by the value of a
If a <0 then we get a maximum value.
If a>0, it is a minimum value.
E.g.
01) f (x) = x^2 + 4x +6 02) g(x)= -x^2 + 4x +6 03) f(x)= 2x^2 + 4x +5
(x + 2)^2 g(x)= -{ x^2 -4x -6} f(x)= 2{x^2 + 2x + 5/2}
f (x) = (x + 2)^2 + 2 (x-2)^2 (x+1)^2
(x + 2) = 0 g(x)= -{(x-2)^2 -10 } f(x)= 2{(x+1)^2 + 1/2 }
The minimum value is 2 g(x)= -(x-2)^2 + 10 f(x)= 2(x+1)^2 + 1
(x - 2) = 0 (x + 1) = 0
The maximum value is 10 The minimum value is 1
04) f(x)= -3x^2 + 2x -6
f(x)= -3{x^2 -2/3 x +2}
(x-1/3)^2
f(x)= -3{(x-1/3)^2 + 17/9}
f(x)= -3(x-1/3)^2 - 17/3
(x - 1/3) = 0
The maximum value is -17/3
0 Comments